Directed transport of Brownian particles in a changing temperature field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 J. Phys. A: Math. Theor. 43229801
(http://iopscience.iop.org/1751-8121/43/22/229801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 03/06/2010 at 09:17

Please note that terms and conditions apply.

Corrigendum

Directed transport of Brownian particles in a changing temperature field

A Grillo, A Jinha, S Federico, R Ait-Haddou, W Herzog and G Giaquinta 2008 J. Phys. A: Math. Theor. 41015002 (26pp) doi:10.1088/1751-8113/41/1/015002

Equation (3.8c) should read:

$$
\bar{J}_{2}=-\left[\bar{T}_{0} \frac{\partial \bar{\rho}_{2}}{\partial X}+\bar{T}_{1} \frac{\partial \bar{\rho}_{1}}{\partial X}+\bar{T}_{2} \frac{\partial \bar{\rho}_{0}}{\partial X}+\phi_{c} \frac{\partial \bar{V}}{\partial X} \bar{\rho}_{2}\right]
$$

Equation (3.12) should read:

$$
\varepsilon:\left\{\begin{array}{l}
\frac{\partial \bar{\rho}_{1}}{\partial \tau}=\sigma \frac{\partial}{\partial X}\left[\bar{T}_{0} \frac{\partial \bar{\rho}_{2}}{\partial X}+\bar{T}_{1} \frac{\partial \bar{\rho}_{1}}{\partial X}+\bar{T}_{2} \frac{\partial \bar{\rho}_{0}}{\partial X}+\phi_{c} \frac{\partial \bar{V}}{\partial X} \bar{\rho}_{2}\right] \\
\frac{\partial \bar{T}_{1}}{\partial \tau}=\frac{\partial^{2} \bar{T}_{2}}{\partial X^{2}}+\sigma \mu \frac{\partial \bar{V}}{\partial X}\left[\bar{T}_{0} \frac{\partial \bar{\rho}_{2}}{\partial X}+\bar{T}_{1} \frac{\partial \bar{\rho}_{1}}{\partial X}+\bar{T}_{2} \frac{\partial \bar{\rho}_{0}}{\partial X}+\phi_{c} \frac{\partial \bar{V}}{\partial X} \bar{\rho}_{2}\right]
\end{array}\right.
$$

In equation (3.13) the following two conditions should be added:

$$
\bar{\rho}_{2}\left(t, X_{n}\right)=\bar{\rho}_{2}\left(t, X_{n}+1\right), \quad \text { and } \quad \int_{0}^{1} \bar{\rho}_{2}(t, X) \mathrm{d} X=0 .
$$

The second condition on the third line of equation (3.14) should read:

$$
\frac{\partial \bar{T}_{2}}{\partial X}\left(t, X_{n}\right)=\frac{\partial \bar{T}_{2}}{\partial X}\left(t, X_{n}+1\right)
$$

Equation (4.40) should read:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \int_{X_{n}}^{X_{n}+1} \bar{T}_{1}(\tau, X) \mathrm{d} X=-\sigma \mu \int_{X_{n}}^{X_{n}+1} \frac{\partial \bar{V}}{\partial X}(\tau, X) \bar{J}_{2}(\tau, X) \mathrm{d} X .
$$

Equation (4.41) and the text above should read:
Since the potential \bar{V} and the current \bar{J}_{2} are periodic in space, integration by parts of the right-hand side of equation (4.40) yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \int_{X_{n}}^{X_{n}+1} \bar{T}_{1}(\tau, X) \mathrm{d} X=\sigma \mu \int_{X_{n}}^{X_{n}+1} \bar{V}(\tau, X) \frac{\partial \bar{J}_{2}}{\partial X}(\tau, X) \mathrm{d} X .
$$

Acknowledgment

A Grillo would like to thank Ms Giovanna Naselli for useful discussions about the manuscript.

